C. U. SHAH UNIVERSITY

Winter Examination-2022

Subject Name: Operations Research
Subject Code: 5SC01OPR1
Branch: M.Sc. (Mathematics)
Semester: I Date: 06/01/2023
Time: 11:00 AM To 2:00 PM
Marks:70

Instructions:

(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

SECTION - I			
Q-1		Attempt the Following questions.	(07)
	a	Define : Feasible Solution.	01
	b	Define : Optimal solution.	01
	c	Define : Basic solution.	01
	d	Write Down Canonical form of Linear programming Problem.	02
	e	Write Down Matrix form of LPP.	02
Q-2		Attempt all questions	(14)
	A	Solve the linear programming problem by using simplex method $\operatorname{Max} Z=3 x_{1}+2 x_{2}$ Subject to $\begin{gathered} x_{1}+x_{2} \leq 4 \\ x_{1}-x_{2} \leq 2 \\ \text { and } x_{1}, x_{2} \geq 0 \end{gathered}$	06
	B	Solve the linear programming problem by using graphical method $\operatorname{Max} Z=15 x_{1}+10 x_{2}$ Subject to, $\begin{gathered} 4 x_{1}+2 x_{2} \leq 360 \\ 3 x_{1} \leq 180 \end{gathered}$ $5 x_{2} \leq 200 \text { And } x_{1}, x_{2} \geq 0$	04
	C	A person requires 10,12 and 12 units of chemical A, B and C respectively for his garden. A liquid product contains 5, 2 and 1 units of A, B and C respectively, per jar. a dry product contains 1,2 and 4 units of A, B, C per carton. If the liquid product is sold for Rs 3 per jar and the dry product is sold for Rs 2 per carton. How many units of each product should be purchased, in order to minimize the cost and meet the requirement.	04
OR			
Q-2		Attempt all questions	(14)

$\left.\begin{array}{|l|r|l|l|c|}\hline & \text { A } & \begin{array}{l}\text { Solve the linear programming problem by using simplex method } \\ \text { Min } Z=x_{1}-3 x_{2}+2 x_{3}\end{array} & 07 \\ \text { Subject to } \\ 3 x_{1}-x_{2}+2 x_{3} \leq 7 \\ -2 x_{1}+4 x_{2} \leq 12\end{array}\right)$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline A \& \begin{tabular}{l}
A departmen performed th the given in \\
How shoul the total man
\end{tabular} \& a c
me
effe

A
A
B
C
D
E

E \& \begin{tabular}{c}
any h hars)

ness

\hline

\hline I

\hline 10

\hline 3

\hline 10

\hline 7

\hline 7

\hline allo

 \&

ve e

each

rix

Em

II

\hline 5

\hline 9

7

\hline 11

\hline 9

\hline

 \&

yees

tak

ees

III

13

18

2
9

10

 \&

the

per

 \&

jobs to be each job is

minimize
\end{tabular} \& 0

\hline B \& Find the extr \& m \& of the \& ctio \& (x, y) \& $x^{3}+$ \& $-y^{2}$. \& 07

\hline
\end{tabular}

